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a b s t r a c t

The forced vibration response of a single degree of freedom torsional system with

Coulomb friction, under a periodically varying normal load, is studied. First, an

enhanced multi-term harmonic balance method is developed to calculate nonlinear

responses directly in frequency domain; this should be in general applicable to

approximated by a truncated Fourier series with a reasonable number of harmonic

components and utilized for case studies. Finally, the effects of duty ratio on nonlinear

frequency responses are examined.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

There is a large body of literature on time-invariant friction dynamics [1–4], starting from Den Hartog who
studied frequency response by assuming that the friction interface experiences no more than two stops in one cycle [1]. In
contrast, the time-varying friction problem, say when the normal load varies with time, is relatively less studied. In
clutches, brakes and other driveline systems, the normal load (or torque) usually varies with time; such variations are
usually caused by surface undulations or changes in frictional contact regimes. For instance, changes in the brake rotor
thickness lead to a corresponding variation in the normal load in brake judder problems [5]. Recently, we numerically
examined the influence of time-varying friction in a two degree of freedom torsional system, in which the dry friction acts
as a power transmission path with application to an automotive driveline problem [6]. Badertscher et al. experimentally
studied the response of a single degree of freedom system under normal dither loads, with application to brake squeal
control [7]. However, prior formulations are limited to sinusoidally varying normal loads. This motivates us to examine the
forced response of an oscillator with dry friction under periodically varying normal load. Further, since previous frequency
domain solutions are limited to nonlinear time-invariant systems [8–11], we propose an enhanced semi-analytical multi-
term harmonic balance method (MHBM) that could be employed to construct solutions to nonlinear time-varying system
problems [12].
2. Problem formulation

Consider a single degree of freedom torsional system with both dry friction and viscous damping elements (in parallel),
as shown in Fig. 1. The nonlinear friction torque is a function of periodically varying normal load N(t). The governing
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www.sciencedirect.com/science/journal/yjsvi
www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.04.003
mailto:singh.3@osu.edu


ARTICLE IN PRESS

ζ

θ
N (τ)

Fig. 1. Single degree of freedom torsional system with both dry friction (under periodically varying normal load N(t)) and viscous damping elements.
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equation (in the dimensionless form) is as follows where ð:Þ0 ¼ dð:Þ=dt and ð:Þ00 ¼ d2
ð:Þ=dt2:

y00 þ 2zy0 þ yþ Tf ðy
0; tÞ ¼ Tp sinðOtÞ (1)

where B is the viscous damping ratio, y is the angular displacement and Tp is the amplitude of externally applied harmonic
torque at O. The nonlinear time-varying friction torque is given by a product of speed-dependent friction coefficient m(y0),
effective arm of moment r and N(t) as:

Tf ðy
0; tÞ ¼ rmðy0ÞNðtÞ (2)

Assume that N(t) is periodic with fundamental frequency O/k where k is an integer of sub-harmonic index and O is the
frequency of external torque. Also the classical Coulomb friction is assumed with ms as static (or kinetic) friction coefficient.
Thus, represent N(t) by Fourier series as:

NðtÞ ¼ N0 þ
X
n¼1

N2n�1 sin
n

kOt
� �

þ N2n cos
n

kOt
� �� �

, (3a)

mðy0Þ ¼
ms jy0j40

½�ms ms� jy
0
j ¼ 0

(
. (3b)

The primary objective of this communication is to study the nonlinear frequency response of Eq. (1). An enhanced multi-
term harmonic balance method is proposed to directly calculate the nonlinear forced response in frequency domain. The
feasibility of the proposed semi-analytical method is demonstrated and validated with Runge–Kutta numerical integration.
A pulse width modulated N(t) is then considered and the effects of pulse duty ratio on nonlinear responses are briefly
studied.

3. Enhanced harmonic balance method for nonlinear time-varying systems

The multi-term harmonic balance method has previously been applied to mainly construct periodic solutions to
nonlinear time-invariant systems [8–11]. Thus, we re-formulate it for application to a nonlinear time-varying system as
defined by Eq. (1) and determine the periodic response of y(t). A generic formulation for solving the nonlinear time-varying
system is first illustrated. Essentially, the multi-term harmonic balance method constructs approximate periodic responses
that are represented by a truncated Fourier series, as shown below, where Nh is the harmonic order and u is the
sub-harmonic index. For the sake of illustration, the nonlinear term in Eq. (1) is further generalized in a manner similar
to separation of variables, Tf ðy; _y; tÞ ¼ uðyÞvðy0ÞqðtÞ, i.e. the nonlinear friction torque is a product of three functions of y, y0

and t, respectively.

yðtÞ ¼ a0 þ
XNhu

n¼1

a2n�1 sin
n

uOt
� �

þ a2n cos
n

uOt
� �� �

�!
discretize

h ¼ Da, (4a)

Tf ¼ b0 þ
XNhu

n¼1

b2n�1 sin
n

uOt
� �

þ b2n cos
n

uOt
� �� �

�!
discretize

Tf ¼ Db. (4b)
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Here, D is the discrete inverse Fourier transform operator:

D ¼

1 sin
n

u
Ot0

� �
cos

n

u
Ot0

� �
� � � cos

Nhu
u

Ot0

� �

..

. ..
. ..

. ..
. ..

.

1 sin
n

u
OtK�1

� �
cos

n

u
OtK�1

� �
� � � cos

Nhu
u

OtK�1

� �

2
6666664

3
7777775

. (5)

And a ¼ ½a0 a1 . . . a2Nhu�
T, b ¼ ½b0 b1 . . . b2Nhu�

T. Next, Eq. (1) is solved by transforming it into an algebraic problem and
then the harmonic coefficients between excitation (with coefficient TP and denoted as p in vector format) and responses are
matched. Next, the numerical iteration process is employed to minimize the residue R where D is a differentiator and
b ¼ DþTf , where D+ represents a pseudo inverse ðDTDÞ�1DT; for application to nonlinear time-invariant systems, refer to
our previous paper [11].

D ¼

0

. .
.

0 �n=u
n=u 0

" #

. .
.

2
666666664

3
777777775

, (6a)

R ¼ O2D2aþ 2zODaþ aþ b� p. (6b)

To ensure the minimization process following the deepest descent, define the Jacobian (J) matrix as:

J ¼
qR

qa
¼ O2D2 þ 2zODþ

qa

qa
þ
qb

qa
. (7)

Since y is periodic, u(y) and v(y0) are also periodic. In addition, the periodic q(t) can be expressed as qðtÞ ¼ Dc, since it is
independent from y and y0 and c is usually a known vector. Consequently, the following qb/qa expression holds,

qb

qa
¼

qb

qTf

� �
qTf

qh
qh
qa
þ
qTf

qh0
qh0

qa

� �
, (8a)

qTf

qh
¼ diag½vðy0Þ�diag½qðtÞ� quðyÞ

qh

� �
;

qh
qa
¼ D, (8b,c)

qTf

qh0
¼ diag½uðyÞ�diag½qðtÞ� qvðy0Þ

qh0

� �
;

qh0

qa
¼ ODD. (8d,e)

Here diag½ � is an operator to diagonalize one-dimensional vectors. Finally, the path following technique is used to calculate
the turning points. The basic idea is to include qR/qO as an independent vector and form an augmented J.

qR

qO
¼ 2OD2 þ 2zDþ

qb

qO
, (9a)

qb

qO
¼

qb

qTf

qvðy0Þ
qh0

qh0

qO
. (9b)

To apply the above formulation to the problem at hand, one should simply replace u(y) with an identity, v(y0) with m(y0)
and q(t) with N(t).

To assess the feasibility of multi-term harmonic balance method, consider a periodically varying normal load NðtÞ ¼ Dd
and d ¼ ½0:6 0:2 0:1 0:3 � 0:4�T. Fig. 2 shows the nonlinear frequency responses of the time-varying system. Clearly, the
responses of nonlinear time-invariant (d ¼ ½0:6 0 0 0 0�T) and time-varying systems significantly differ. For the sake of
validation, Eq. (1) is also numerically solved using Runge–Kutta algorithm [13]. As shown in Fig. 2, an excellent match
between multi-term harmonic balance method and numerical integration solutions is evident over the entire frequency
range of interest. Jump phenomena that are typically observed in nonlinear stiffness problems [14] do not occur here. This
can be explained by the fact that dry friction is essentially a nonlinear damping element that does not change the effective
stiffness of the system and thus the backbone curves do not bend or fold. Consequently, the path following technique is not
necessary for this type of problem though it is widely used to calculate multi-valued solutions [15] by adaptively adjusting
the frequency step. Accordingly, the frequency response maps (or contour plots) that require equal-spaced frequency points
for a variation in the duty ratio (as presented in Section 5) are generated without employing the path following technique.
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Fig. 2. Validation of the multi-term harmonic balance method (MHBM). (a) Comparison of nonlinear frequency responses between nonlinear time-

varying and time-invariant systems corresponding to Eq (5). Key: � � � , nonlinear time-invariant system using MHBM; ���, nonlinear time-varying

system using MHBM; —, nonlinear time-varying system using numerical integration. (b) Periodically varying normal load at X ¼ 0.5.
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4. Pulse width modulated normal load

Next, we apply the enhance MHBM to a pulse-width modulated normal load as shown in Fig. 3. Note that N(t) is semi-
definite-positive and we do not consider separation between friction surfaces. In our study, we assume the pulse has the
same period P (or frequency) as Tp for the sake of conciseness, i.e. P ¼ 2p=O. Taking into account the time delay tg 2 ½0PÞ

between N(t) and Tp and duty ratio a 2 ½0 1�, the pulse can be further approximated by Fourier series,
NðtÞ ¼ p0 þ

P
n¼1pn sinðnOtÞ þ qn cosðnOtÞ, with the following coefficients, where Q is the magnitude of the normal load.

p0 ¼ Qa, (10a)

pn ¼
�Q

np ½cosðnOtg þ 2npaÞ � cosðnOtgÞ�, (10b)

qn ¼
Q

np
½sinðnOtg þ 2npaÞ � sinðnOtgÞ�. (10c)

Mathematically, a very large number of harmonic terms should eliminate the Gibbs effect and virtually reconstruct the
pulse-width modulated load. However, the amplitude drops at higher harmonics as evident by (10). We numerically
(employing the Runge–Kutta routine) evaluate the effect of harmonic terms on nonlinear stick–slip response (with a ¼ 0.8,
tg ¼ 0 at O ¼ 0.45). Virtually identical results are obtained with 50 or more harmonics. Consequently, 50 harmonic terms
are utilized to approximate the pulse-width modulated normal load in this study. Further, for the sake of brevity, our
research is primarily limited to the examination of the effect of duty ratio and therefore we assume zero time delay.
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Fig. 3. A pulse width modulated normal load with duty ratio a and time delay tg: (a) schematic presentation; (b) reconstruction of the PWM normal load

(at O ¼ 0.5) using 50 harmonic terms.
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Fig. 4. Effect of pulse duty ratio a on the nonlinear frequency responses. Key: ���, a ¼ 0.4 using MHBM; ���, a ¼ 0.8 using MHBM; —, a ¼ 1.0 using

MHBM; &, a ¼ 0.8 using numerical integration with 50 harmonic terms.
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5. Effect of duty ratio on nonlinear frequency responses

Fig. 4 shows the root-mean-square (rms) frequency responses when a ¼ 0.4, 0.8 and 1.0 (constant normal load). Again,
the Runge–Kutta integration is employed to validate the nonlinear time-varying results obtained from MHBM when
a ¼ 0.8. Observe that beyond the resonant frequency, the constant load (a ¼ 1) yields more vibration attenuation. From the
corresponding time domain results, we know that the friction interface experiences pure slipping motion. Consequently,
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a constant normal load certainly dissipates the maximum energy. On the other hand, we observe different, yet interesting,
phenomenon at a lower frequency (below the resonance). As shown in Fig. 4, a ¼ 0.4 provides better vibration attenuation
than a ¼ 1.0 from O ¼ 0.31 to 0.52,. This regime is even enhanced from O ¼ 0.24 to 0.65 when a ¼ 0.8. For example, at
O ¼ 0.45, yrmsða ¼ 1Þ=yrmsða ¼ 0:8Þ ¼ 1:5. This suggests that the employment of a constant normal load may not be the
best vibration control strategy depending on the stick–slip regime. This phenomenon is attributed to the stick–slip
motions. Analytically, the energy dissipation over one full period (P) is:

Edissipate ¼

Z P

0
Tf ðy

0; tÞy0 dt. (13)

The following two conditions should dissipate more energy under stick–slip: (1) The effective dissipation window, i.e.
Tf ðy

0; tÞy0a0 or y0ðtÞa0 \ NðtÞa0, should have a longer span within one period; (2) within that span, y0ðtÞ should have a
higher value while Q remains fixed. Although a ¼ 1 provides a non-zero N(t) during the whole period, the stick phase with
y0 ¼ 0 consumes more time within one period. That implies that Edissipate, as defined by Eq. (13), may not achieve the
maximum value. Consequently, a ¼ 1 does not necessarily provide more attenuation in certain frequency ranges.

To further examine the effects of a on frequency responses, a contour map of nonlinear responses yrms(a,O) is generated
as shown in Fig. 5. Both light (when rmsQ=Tp ¼ 0:1) and heavy load (when rmsQ=Tp ¼ 0:6) conditions are considered while
recognizing that stick–slip motions tend to occur under a heavier load [4]. First, we note that a higher value of a reduces the
vibration amplitude in the vicinity of primary resonance under both light and heavy loads, and the contour lines are dome-
shaped accordingly. However, differences are found at off-resonant frequencies. Under the light load condition, we
interestingly find that a change in a has minimal effect on the vibration amplitudes (as shown in Fig. 5a), except at lower
frequencies where minor zig-zags indicate rather small effects.

In contrast, when the contour lines move away from the primary resonance regime under a heavy load as shown in
Fig. 5b, zig-zag patterns are seen either below or above the resonance. Overall, a ¼ 1 still provides best attenuation beyond
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the resonance. Nonetheless, the contour lines are significantly ‘‘deformed’’ in the lower frequency regime as a result of
significant stick–slip motions. When a is around 0.8, there exist an apparent regime where the contour curves bend deeply
toward the higher frequency, which indicates the lowest vibration amplitudes at each excitation frequency. For example at
O ¼ 0.53, yrms ¼ 0:591 when a ¼ 0.8; this represents a 35% reduction in the vibration amplitude from a ¼ 1. Fig. 6 shows
four additional sets of results with rmsQ=Tp ¼ 0:2; 0:3; 0:4 and 0:5, respectively. In all cases, the maximum vibration
attenuation is found when a is around 0.8.
6. Conclusion

In this communication, forced vibration response characteristics of a single degree of freedom torsional system with
combined Coulomb friction (under a periodically varying normal load) and viscous damping is studied. Two contributions
emerge. First, an enhanced multi-term harmonic balance method has been successfully developed to construct the periodic
solutions to a nonlinear time-varying system. Second, the effect of duty ratio of a pulse width modulated load is examined
by assuming the classical Coulomb friction law. When the stick–slip motions occur, the system response depends on the
duty ratio. Interestingly, a constant normal load may not be the best choice to suppress the vibration amplitude below the
resonant frequency. Our investigations suggest that the most vibration attenuation is achieved when duty ratio is around
0.8; this should be examined further along with the effect of time delay. Future work will extend the enhanced semi-
analytical method to multi-degree of freedom nonlinear systems with time-varying parameters or normal loads.
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